Lesson 8. Work Scheduling Models, Revisited

1 The postal workers problem, revisited

Example 1. Postal employees in Simplexville work for 5 consecutive days, followed by 2 days off, repeated weekly. Below are the minimum number of employees needed for each day of the week:

Day	Employees needed
Monday	7
Tuesday	8
Wednesday	7
Thursday	6
Friday	6
Saturday	4
Sunday	5

We want to determine the minimum total number of employees needed.

Our original model:

Decision variables. Let

 x_1 = number of employees who work "shift 1" – i.e. Monday to Friday x_2 = number of employees who work "shift 2" – i.e. Tuesday to Saturday \vdots

 x_7 = number of employees who work "shift 7" – i.e. Sunday to Thursday

Objective function and constraints.

min
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$

s.t. $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 \ge 7$ (Mon)
 $x_1 + x_2 + x_3 + x_6 + x_7 \ge 8$ (Tue)
 $x_1 + x_2 + x_3 + x_4 + x_5 \ge 6$ (Thu)
 $x_1 + x_2 + x_3 + x_4 + x_5 \ge 6$ (Fri)
 $x_2 + x_3 + x_4 + x_5 + x_6 \ge 4$ (Sat)
 $x_3 + x_4 + x_5 + x_6 + x_7 \ge 5$ (Sun)
 $x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$

- Left hand side of (Mon): add up the variables x_i such that shift i covers Monday
- We need a way to specify elements of a set that meet certain characteristics

2 Some more set notation

- What if we only want certain elements of a set?
- ":" notation

$$j \in S$$
: [condition] \Leftrightarrow $j \in$ elements of S such that [condition] holds

- For example:
 - Define $N = \{1, 2, 3\}, S_1 = \{a, b\}, S_2 = \{b, c\}, S_3 = \{a, c\}$
 - Then

- Some people use "|" instead ":"
- Describe the constants of Example 1 using sets and parameters.

• Write a parameterized linear program for Example 1 using the sets and parameters you described above.

DVs:
$$x_j = \# \text{ employees assigned to shift } j \text{ for } j \in S$$

min $\sum_{j \in S} x_j$ (hotal $\# \text{ employees}$)

s.t. $\sum_{j \in S: i \in D_j} x_j \ge r_i$ for $i \in D$ (daily requirements)

 $x_j \ge 0$ for $j \in S$ (nonnegativity)

 $i = M$ $\sum_{j \in S: M \in D_j} x_j \ge r_M$

3 The Rusty Knot, revisited

Example 2. At the Rusty Knot, tables are set and cleared by runners working 5-hour shifts that start on the hour, from 5am to 10am. Runners in these 5-hour shifts take a mandatory break during the 3rd hour of their shifts. For example, the shift that starts at 9am ends at 2pm, with a break from 11am-12pm. The Rusty Knot pays \$7 per hour for the shifts that start at 5am, 6am, and 7am, and \$6 per hour for the shifts that start at 8am, 9am, and 10am. Past experience indicates that the following number of runners are needed at each hour of operation:

Hour	Number of runners required
5am-6am	2
6am-7am	3
7am-8am	5
8am-9am	5
9am-10am	4
10am-11am	3
11am-12pm	6
12pm-1pm	4
1pm-2pm	3
2pm-3pm	2

Formulate a linear program that determines a cost-minimizing staffing plan. You may assume that fractional solutions are acceptable.

Sets.
$$H = \text{set of hours} = \{s, 6, 7, 8, 9, 10, 11, 1, 2\}$$

 $S = \text{set of shifts} = \{s, 6, 7, 8, 9, 10\}$
 $H_j = \text{set of hours covered by shift } j \quad \text{for } j \in S$
 $e.g.$ $H_s = \{s, 6, 8, 9\}$
 $H_q = \{9, 10, 12, 1\}$

Parameters. $v_i = \#$ runners required in hour i for ietl $C_j = \text{hourly cost of shift } j$ for $j \in S$

DVs.
$$x_j = \# \text{ runners assigned to shift } j \text{ for } j \in S$$

min $\sum_{j \in S} (5C_j) x_j$ (total cost)

s.t. $\sum_{j \in S: i \in H_j} x_j \ge 0$ for $j \in S$ (hourly requirements)

 $x_j \ge 0$ for $j \in S$ (nonnegativity)